2020/Grupo3/DimensionamientoFisico

De Evaluación de Proyectos
Ir a la navegación Ir a la búsqueda

Determinación de la localización

Para el siguiente análisis ponderamos principalmente los factores de cercanía con los clientes y los proveedores, además de que consideramos imprescindible la posibilidad de tener un terreno amplio y energía eléctrica.

Como se puede observar en la matriz se concluye que la mejor locación para los factores que nosotros consideramos es GBA Sur.

Definición técnica del producto

Plano

Plano ISO-E del tubo PN20, 20 mm.
Plano ISO-E del tubo PN20, 20 mm.

BOM

Ítem Código Descripción Nivel Unidad de medida Cantidad
1 PT 20 Tubos PN20 x 20mm embolsados 1 u 1
2 BOL __Bolsa 2 gr 208
3 PN20 __Tubo PN20 x 20mm 2 u 20
4 TSS ____Tubo sin sellar 3 u 20
5 SEL ____Sello/Cinta de marcación 3 mts 48
6 TUB ______Tubo verde 4 u 20
7 LIN ______Línea naranja 4 u 20
8 PPR-T3 ________Polipropileno Random Tipo 3 5 gr 9.345,6
9 PPB ________Polipropileno Bloque 5 gr 2.336,4
10 MBv ________Masterbatch verde 5 gr 1.175,1
11 MBn ________Masterbatch naranja 5 gr 4,9

Especificaciones técnicas

Normas aplicables

La fabricación de tubos por unión de termofusión debe ajustarse a las siguientes normas:

IRAM 13.470: "1.1. Esta norma establece las medidas y las presiones nominales de los tubos de polipropileno homopolímero (PP-H), copolímero “block” (PP-B) o “random” (PP-R), para unión por interfusión, que se destinan a la conducción de líquidos bajo presión, en general, y de agua potable, en particular."

IRAM 13.471: "1. Establecer los requisitos que deben cumplir los tubos fabricados con polipropileno homopolímero, copolímero “block” y copolímero “random”; para unión por interfusión, destinados al transporte de agua potable o no, bajo presión. Se incluye un anexo normativo para evaluar el material del tubo, un anexo con un método alternativo para determinar la resistencia al impacto, y otro con las condiciones de inspección y recepción."

Plan de ensayos

Resistencia al impacto

Aparato Charpy con guillotina y dinamómetro.

Para los tubos de hay dos ensayos de resistencia mecánica que son muy recurrentes, en primer lugar está el ensayo Charpy y en segundo lugar el ensayo Izod. Ambos miden la tenacidad o resiliencia del material pero para nuestro producto optamos solamente por realizar un ensayo Charpy.

Probeta sin rotura.

Para este ensayo contamos con el aparato estandarizado de la figura. Colocamos la probeta de prueba en unas morsas y luego se procede a destrabar la guillotina. El dinamómetro va a quedar trabado en la fuerza máxima experimentada.

La energía de rotura se puede calcular como:

Ea = MgL[cos(β) − cos(α)]

Donde M es la masa de la guillotina, g representa la fuerza de la gravedad, L la longitud del péndulo y Alpha y beta los ángulos inicial y final, después de la rotura, respectivamente.

En nuestro caso, el ensayo Charpy se produce con dos temperaturas distintas, debido que para los polímeros la temperatura influye de forma sensible en su resistencia mecánica. Las bajas temperaturas los fragilizan y altas temperaturas provocan la despolimerización del plástico.

En la medida que se aumenta la velocidad de la guillotina, la probeta empieza a ceder. El fin del ensayo es procurar con la mayor precisión cuál fue la fuerza que provocó la rotura.

Ensayo deflexión térmica

Máquina de ensayo HDT a la izquierda y de ensayo VICAT a la derecha.

El ensayo para calcular la deflexión térmica se llama ISO HDT (Heat Deflection Temperature) y consiste en provocar una flexión a una probeta estandarizada de material con un aumento gradual de la temperatura.

Formato del ensayo HDT dentro de la máquina.

Todas las condiciones del ensayo están normalizada, dentro de las cuales están las presiones posibles para el ensayo, que son de 0,45 MPa o de 1.8 MPa. Luego , la temperatura a la cual se nota una deflexión de 0.25mm es la HDT.

La velocidad de elevación de la temperatura es de aproximadamente 2 °C por minuto, es decir, la suba no es súbita.

Para nuestro caso la HDT a 0.45 MPa es 70°C y la HDT 1.8MPa es 46°C.

Ensayo de tracción

Ensayo de tracción de una probeta polimérica.
Dirección de las tensiones en el ensayo de tracción

Este es el ensayo mecánico fundamental debido a todo lo que nos brinda. Para realizarlo partimos de una probeta estandarizada del material. Luego, procedemos a asegurarnos de que está bien montado al aparato, el hecho de que los ejes axiales no coincidan podría provocar el aparecimiento de fuerzas axiales.

Luego, tenemos que proceder a cargar lentamente al material de esfuerzos de tracción.

Los ensayos de tracción se utilizan para determinar el módulo de elasticidad, límite elástico, alargamiento, límite proporcional, reducción de la superficie, resistencia a la tracción, límite de elasticidad, límite elástico a la tracción y otras propiedades.

Así para nuestro caso obtenemos un índice de fluencia de 0,3g/10min. Un módulo de elasticidad en flexión de 830 MPa. Un esfuerzo de tracción a la fluencia de 25 MPa y una elongación de 11%.

Acondicionamiento del producto

El tubo será marcado según lo exigido por la Norma IRAM 13.470, la cual consta de la siguiente leyenda: " PN 20-PPR Tipo 3 SERIE S3.2 20mm x 2.8mm" SEGÚN NORMA IRAM 13470 AGUA FRIA Y CALIENTE INDUSTRIA ARGENTINA LOTE Nº = XXXXXX". El número de lote, no es exigido, pero lo hemos agregado, para realizar la trazabilidad correspondiente.

Como se mencionó, cada bolsa contendrá 20 tubos, y en esta tendrá una etiqueta la cual especificará su destino, número de lote y fecha.

Definición del proceso de producción

Diagrama de Flujo de Fabricación y Control. Cursogramas gráficos o analíticos.

Descripción de cada etapa del proceso productivo

Dosificación de la MP

El proceso de dosificación de la materia prima consiste en preparar la carga a extruir. Esta carga consiste en polipropileno y masterbatch. Este proceso se realiza en el cargador gravimétrico cuya función consiste en corregir constantemente los desvíos que se puedan producir respecto del parámetro que queremos controlar, en este caso, la carga en la tolva. Una vez que mezclamos la materia prima en el depósito del cargador, éste la suministra en la medida que la tolva alimente a la extrusora, así siempre vamos a tener una alimentación constante de nuestra extrusora.

Extrusión principal

Partes que constituyen una extrusora.
Partes que constituyen una extrusora.

La extrusión es el proceso por el cual la materia prima sólida ingresa a un compartimiento cilíndrico en el que se haya un tornillo de arquímedes. El cilindro cuenta con un sistema de transmisión de calor y resistencias que elevan la temperatura del material sólido mientras que el tornillo genera una presurización. Esto, además de una fusión, provoca el efecto de arrastre de la materia prima sólida al inicio de la extrusora, prohibiendo así vacíos de materia prima que generen oclusiones. La zona final de la extrusora, en la que se haya el material fundido se llama zona de dosificado, a esta zona le corresponde la máxima presión.

La operación descrita anteriormente se cumple en las dos máquinas de la sección, la extrusora principal y la extrusora secundaria. Ambas forman parte de lo que se llama proceso de co-extrusión.

Enfriamiento

Luego de salir de la extrusora el material pasa a la batea de enfriamiento que aplica una bajada de temperatura de forma tal que el plástico pueda conformar su estructura cristalina mejorando su resistencia mecánica. Un operario debe controlar la temperatura del agua adicionada, la presión dentro de la batea y el caudal de la misma. Una baja temperatura provoca el cristalizado del polímero antes de que forme su estructura. Un alto caudal en ciertas zonas provoca enfriados localizados, que pueden ser prematuros afectando la estructura, nuevamente. El operario tiene llaves de paso, termómetros y manómetros para controlar todo lo anterior. Los parámetros están prefijados. La batea mide 27 metros.

Dosificación de MP de línea naranja

Este proceso consiste en cargar una mezcla de masterbatch y polipropileno al cargador gravimétrico de la extrusora secundaria. Esta mezcla está destinada a conformar la línea distintiva de los tubos.

Co-extrusión

Diagrama descriptivo del proceso de co-extrusión

La coextrusión consiste en acoplar la línea producida en la extrusora secundaria al producto obtenido por la primaria. De esta forma queda conformado un tubo con una línea distintiva que indica sus propiedades.

Marcado

El marcado es la escritura de los parámetros más importantes en la cara externa del tubo. Este proceso lo realiza una marcado neumática que tiene un paso para la inscripción. Se debe controlar que la cinta de marcado no presente mucha tensión y se rompa.

Corte

Una vez realizado el marcado una cuchilla debe descender cada cierto paso para obtener los tubos de manera individual. Esta cuchilla es de tipo neumática. Debe mantener tolerancias dentro de 0.3 mm que controla el operador en el puesto de control de calidad del producto terminado.

Conformación

Luego de obtener las dos líneas desde ámbas extrusoras debemos hacerlas pasar por un husillo que se encarga de amalgamar estas líneas conformando el tubo terminado con su línea distintiva.

Embalaje

En este proceso un operario recibe los tubos y debe empacar el material en la misma medida de la velocidad de la línea. El embalaje se realiza mediante una máquina selladora que realiza su trabajo mediante calor, sellando el empaque actual y además sellando un lado del empaque siguiente. El operario debe acomodar el haz de tubos y descender el cabezal de la máquina para producir este proceso.

Control de calidad

Para este puesto un operario realiza primero una revisión visual del material, constituyendo esto una inspección cualitativa. Luego procede a medir algunos tubos del haz analizando que no haya desvíos, lo que constituye la inspección cuantitativa. En la inspección cualitativa se fija el color y la rugosidad. En la cuantitativa se mide el diámetro con un pie de rey y el largo con una cinta métrica.

Determinación de las máquinas e instalaciones. Cálculos

Especificaciones técnicas de las máquinas (capacidades, tamaño de lotes, tiempos)

Máquinas principales

Cargador Gravimétrico

  • Marca y modelo: MP Jonix
  • Potencia: 2 kW
  • Dimensiones:
  • Capacidad:
Cargador Gravimétrico MP Jonix

Extrusora Principal

  • Marca y modelo: Cincinnati Talos 60/30G
  • Potencia: 90 kW
  • Dimensiones:
  • Capacidad: 400 kg/h
Extrusora Principal Cincinnati Talos 60/30G

Extrusora Secundaria

  • Marca y modelo: Canziani TR-25
  • Potencia: 5 kW
  • Dimensiones:
  • Capacidad:
Extrusora Secundaria Canziani TR-25

Batea de Conformación

  • Marca y modelo: Cincinnati Vakon 63S/9/2-N m
  • Potencia: 13,7 kW
  • Dimensiones:
  • Capacidad:
Batea de Conformación Cincinnati Vakon 63S/9/2-N m

Batea de Enfriamiento

  • Marca y modelo:
  • Dimensiones: 27m de largo
  • Capacidad: 271 kg/h
Batea de Enfriamiento 27m

Tren de Tiro

  • Marca y modelo: Sica P 125/2
  • Potencia: 3,5 kW
  • Dimensiones:
  • Capacidad: 2100 metros/hora
Tren de Tiro Sica P 125/2

Marcadora

  • Marca y modelo: Gnatta 140/SCRD/V2
  • Potencia: 0,5 kW
  • Dimensiones:
  • Capacidad:
Marcadora Gnatta 140/SCRD/V2

Cortadora

  • Marca y modelo: Sica TRK/SY 10-125a
  • Potencia: 1,25 kW
  • Dimensiones:
  • Capacidad:
Cortadora Sica TRK/SY 10-125a

Equipos auxiliares

La batea de enfriamiento será alimentada por un circuito de enfriamiento, el cual consta de: un circuito cerrado de 40 m3, un Ablandador de agua por ósmosis inversa, una Torre de enfriamiento y 3 Bombas (1 de Impulsión, 1 de Recirculación y 1 de Back up). Mientras que los Compresores presurizan aire al Tren de tiro, la Cortadora y Cargador Gravimétrico.

Ablandadora de Agua por Ósmosis Inversa

  • Marca: Inquinat
Ablandador de agua por Ósmosis Inversa Inquinat

Torre de Enfriamiento

  • Marca y modelo: TecnoTower 140 TR
  • Potencia: 3 kW
Torre de Enfriamiento TecnoTower 140 TR

Bombas de Impulsión, Recirculación y Back Up

  • Marca y modelo: Kunz 124 m3/h @ 3.6 BAR – Motor WEG
  • Potencia: 20 kW
Bombas de Impulsión, Recirculación y Back Up Kunz

Compresor 1

  • Marca y modelo: Sullair SEnergy 2200
  • Potencia: 25 kW
Compresor 1: Sullair SEnergy 2200

Compresor 2

  • Marca y modelo: Sullair LS-10
  • Potencia: 15 kW
Compresor 2: Sullair LS-10

Consumos de energía, agua y otros servicios

Consumo eléctrico
Máquina Consumo (kWh) Cant. horas Consumo diario(kW) Días por mes Consumo mensual(kW)
Cargador Gravimétrico 2 16 32 20 640
Extrusora Principal 90 16 1.440 20 28.800
Extrusora Secundaria o Coextrusora 5 16 80 20 1.600
Batea de Conformación 13,7 16 219,2 20 4.384
Tren de Tiro 3,5 16 56 20 1.120
Marcadora 0,5 16 8 20 160
Cortadora 1,25 16 20 20 400
Torre de Enfriamiento
Bombas de Impulsión
Bombas de Recirculación
Compresor 1
Compresor 2
Varios*
TOTAL

*Aclaración: "Varios" hace referencia a consumos estimados de iluminación en planta, sanitarios, comedor, oficinas.

Mantenimiento y medio (máquinas, tareas,etc.). Descripción de los sistemas de seguridad (incendio, accidentes, etc.)

Cálculo de los ejercicios 1 a 5